Associative learning of classical conditioning as an emergent property of spatially extended spiking neural circuits with synaptic plasticity

نویسندگان

  • John H. C. Palmer
  • Pulin Gong
چکیده

Associative learning of temporally disparate events is of fundamental importance for perceptual and cognitive functions. Previous studies of the neural mechanisms of such association have been mainly focused on individual neurons or synapses, often with an assumption that there is persistent neural firing activity that decays slowly. However, experimental evidence supporting such firing activity for associative learning is still inconclusive. Here we present a novel, alternative account of associative learning in the context of classical conditioning, demonstrating that it is an emergent property of a spatially extended, spiking neural circuit with spike-timing dependent plasticity and short term synaptic depression. We show that both the conditioned and unconditioned stimuli can be represented by spike sequences which are produced by wave patterns propagating through the network, and that the interactions of these sequences are timing-dependent. After training, the occurrence of the sequence encoding the conditioned stimulus (CS) naturally regenerates that encoding the unconditioned stimulus (US), therefore resulting in association between them. Such associative learning based on interactions of spike sequences can happen even when the timescale of their separation is significantly larger than that of individual neurons. In particular, our network model is able to account for the temporal contiguity property of classical conditioning, as observed in behavioral studies. We further show that this emergent associative learning in our network model is quite robust to noise perturbations. Our results therefore demonstrate that associative learning of temporally disparate events can happen in a distributed way at the level of neural circuits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-synaptic neuronal mechanisms of learning and memory in gastropod molluscs.

Gastropod molluscs provide important model systems for investigating the behavioral and neural basis of associative and non-associative learning. Habituation, sensitization, classical and operant conditioning are studied in motor reflex and central pattern generator circuits. Although synaptic plasticity has long been recognized as playing a key role in molluscan learning circuits, non-synaptic...

متن کامل

A CMOS Spiking Neural Network Circuit with Symmetric/Asymmetric STDP Function

SUMMARY In this paper, we propose an analog CMOS circuit which achieves spiking neural networks with spike-timing dependent synaptic plasticity (STDP). In particular, we propose a STDP circuit with symmetric function for the first time, and also we demonstrate associative memory operation in a Hopfield-type feedback network with STDP learning. In our spiking neuron model, analog information exp...

متن کامل

Trace Conditioning in Drosophila Induces Associative Plasticity in Mushroom Body Kenyon Cells and Dopaminergic Neurons

Dopaminergic neurons (DANs) signal punishment and reward during associative learning. In mammals, DANs show associative plasticity that correlates with the discrepancy between predicted and actual reinforcement (prediction error) during classical conditioning. Also in insects, such as Drosophila, DANs show associative plasticity that is, however, less understood. Here, we study associative plas...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Designing Behaviour in Bio-inspired Robots Using Associative Topologies of Spiking-Neural-Networks

This study explores the design and control of the behaviour of agents and robots using simple circuits of spiking neurons and Spike Timing Dependent Plasticity (STDP) as a mechanism of associative and unsupervised learning. Based on a ”reward and punishment” classical conditioning, it is demonstrated that these robots learnt to identify and avoid obstacles as well as to identify and look for re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014